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1. INTRODUCTION

Aircraft and spacecraft include a multitude of components
which may be adversely affected by vibrations. for example,
vibrations may cause airframe or engine parts to suffer premature
fatigue fracture, images in optical systems to blur, instrumen-
tation to malfunction, and laser weapons to become ineffective.
The control of vibrations and their effects therefore is a

significant aspect of aerospace system design and development.

Much work has been done on the design of vibration-resistant
structures, as well as on techniques for vibration reduction.
These techniques include the well-known vibration isolation
approach, detuning (i.e., selecting configurations with small
vibration responses to the excitation of concern), the more
recently developed methods for increasing the vibratory energy
dissipation capabilities (structural damping) of components, and
local additions of vibration-suppressing masses or dynamic spring-
mass systems (absorbers). All of these classical approaches have
been studied rather thoroughly, and the limits on their effective-

nesses and ranges of applicability are reasonably well known.

However, there has recently been developed the concept of
broadband vibration absorbers, which promises to provide simple
and practical vibration control means that not only are highly
effective over a broad frequency range, but also relatively easy
to apply in practical retrofit situations. It is the purpose of
the present report to summarize the results of an exploratory

investigation of this novel vibration reduction means.

Section 2 presents a brief discussion of the basic princ-
iples of dynamic absorbers, both of the conventional and of the
broadband (waveguide) type. In Section 3 there is developed a
general expression for the structural damping provided by any
type of attached dynamic system. Section 4 presents an analysis
of a tapered beam, which represents a tractable approximation to

flexural waveguide absorbers that appear to be most practical.



Section 5 summarizes the results of some corresponding explora-
tory experiments, and Section 6 presents conclusions and

recommendations,



2, BASIC PRINCIPLES OF DYNAMIC ABSORBERS
2.1 Conventional Absorbers

Dynamic vibration absorbers, which often are also called
"tuned dampers," have heen studied and applied extensively. They
are discussed in handbooks (Ref. 1), as well as in classical
textbooks (Refs. 2 and 3). Such an absorber in essence consists
of a mass that is attached to a primary vibrating system via a
spring or similar resilient element. It is well known that the
addition of such an absorber to a dynamic system can alter the
system's vibration characteristics significantly, particularly at

frequencies in the vicinity of the absorber resonance.

Such classical dynamic absorbers essentially are useful only
in situations where the system vibrates at a single constant fre-
quency. By "tuning" the absorber to this frequency - that is, by
adjusting the absorber mass and spring stiffness so that the
absorber's resonance frequency coincides with the disturbing fre-
quency - one may drastically reduce the system motion at the
absorber attachment point. This reduction results because at its
resonance frequency such an absorber essentially generates at the
attachment point an oscillatory force that acts against the
motion of the primary system. However, the desirable vibration
reduction effect of such a dynamic ahsorber is confined to a
limited frequency band in the vicinity of the absorber's reso-
nance. The addition of damping to the ahsorber's spring element
tends to broaden the frequency bhand over which the absorber is
effective (and also to reduce its maximum effectiveness); never-
theless, at frequencies outside of this band the effect of the
added absorber is either detrimental - in that it increases,

rather than decreases, vibrations - or it is negligible.

Some limited investigations have been carried out of absorb-
ers with distributed properties - that is, of absorbers consist-
ing of elastic rods, beams, or plates, rather than of "rigid"

masses attached to "massless" springs (Refs. 1, 4, 5). Such



distributed parameter abhsorbers exhibit a multitude of resonances
and at each resonance act somewhat like a classical mass/spring
absorber; they thus can inhibit vibrations of the primary system
in a multitude of frequency bands, but they also increase these
vibrations in a multitude of bands. Designing such absorbers so
that their attenuation bands match the frequencies of concern is

difficult and usually impractical.

2.2 Waveguide Absorbers

All of the aforementioned studies indicate that dynamic
absorbers which depend on their resonant responses for their
effectiveness can be useful only in relatively narrow and well-
defined frequency ranges. This conclusion may also be reached

from more general considerations of vibrating systems (Ref. 6).

Vibration absorbers that do not depend on their resonant
responses, but which essentially extract energy from a vibrating
system by waveguide action, have the potential for attenuating
vibrations over wide frequency bands. A "waveguide" is simply a
structural system - such as a beam, torsion bar, or plate - along
which vibrational waves can travel. If one end of a waveguide is
attached to the structure whose vibrations are to be controlled,
and the other end is provided with a suitable energy dissipation
arrangement (as illustrated schematically in Fig. 2), then this
arrangement may be expected to extract vibratory energy from the

structure of concern, thus reducing its vibrations.

Realization of the waveguide absorber principle may be
illustrated in terms of a damped rod, as shown schematically in
Fig. 3. One end of this rod is attached to the structure whose
vibrations are to be reduced, and there is provided some damping
arrangement, such as a coating of viscoelastic material. As the
structure vibrates, it causes compressional waves to propagate
along the rod; thus, the abhsorber conducts energy away from the
structure. Due to the damping, the amplitude of the waves



decreases as they propagate - and if the damping per wavelength
is great enough and the rod length encompasses many wavelengths,
then waves reflected from the end of the rod return little energy
to the attachment point. In this case the rod essentially
exhibits no resonances and behaves in effect like an infinitely

long rod that conducts energy away from the driving point.

In order to save weight and also enhance the effectiveness
of damping treatments, one may consider use of a tapered rod (see
Fig.'4) instead of one of uniform cross-section. In such a rod,
the narrowing of the cross—-section causes the amplitudes of waves
to increase as they propagate away from the wider end, thus
improving the dissipation of energy by the damping arrangement.
It should be noted that the tapered structural components as
waveguides, which have been studied previously (e.g., Ref. 7) and
are further investigated in the present report, only facilitate
the practical realization of waveguide absorbers, but that wave-

guide absorbers in principle need not be tapered.



3. DAMPING CONTRIBUTION FROM ATTACHED SYSTEMS
3.1 Energy Transfer

The impedance Zp of a system that is to he attached to a
vibrating structure at a given point is defined as the ratio of
the phasor F of the force acting on the system to the phasor V of
the resulting velocity at the driving point

Zp = Ry + jJp = F/V (3-1)

The instantaneous power entering the system at the driving point

is given by

P = Re{Fel¥t} . Re{vel®t} (3-2)
from which expression one may evaluate the energy D taken on by
the system in one cycle, namely

D = [ Pdt (3=-3)

where the period T obeys

—
i

21 /w (3-4)

and w denotes the radian frequency. From the foregoing
expressions one finds after a little manipulation that the energy
transferred to the system is given by

nRA

- Vf) (3-5)

D =

where V represents the magnitude |V| of the phasor V.
0



Consider the structure to which the system is to be attached
to be vibrating sinusoidally in time, with a velocity distribu-
eJWt Let v, = v(x

tion given by v(x,y) Yg) represent the

SI
velocity phasor at the attachment point on the structure, and let

Z. denote the impedance of the structure at that point. A force

s
with phasor F acting on the vibrating structure at this point so
as to impede its motion then changes the velocity of this point
to

V=V, - F/2 (3-6)

s -
If this force is due to an attached system, which moves with the
same velocity V as the structure and which has an impedance 7,,
then

F o= 2,V . (3-7)

By combining Eqs. 3-6 and 3-7 one finds that both the attached
system and the structural attachment point vibrate with the

velocity

Vs

V= 5575 -
1+ZA/ZS

(3-8)
In view of Eq. 3-5, the energy that the attached system

extracts from the structure (per cycle) is found to obey

mR !V | 2
p = —> T (3-9)
|1+ZA/ZSI

where Rp denotes the real part of the impedance Zp of the
attached system, as implied by Eg. 3-1.

3.2 Contribution to Structural Loss Factor

The loss factor n of a structure is defined in terms of the
energy loss per cycle D and the energy W of vibration as



R (3-10)

This energy of vibration is defined as the sum of the total
kinetic and potential energies in the structure at any instant.
In the steady state, where no net energy is added to the struc-
ture or removed from it, the energy of vibration is constant and
equal to the kinetic energy at the instant the kinetic energy is
at its maximum (and the potential energy is zero). If the
structure vibrates in a single mode, all points on the structure
move in phase, reaching their velocity (and displacement) maxima

simultaneously. For this case, then,

= B 2 =1y 32 -
W= 3 / pVo dxdy = > Msv0 (3-11)
where p = p(x,y) denotes the mass distribution per unit area
and v = v (x,y) represents the magnitude of v(x,y). The inte-
0 0 =
gration extends over the entire structure, and v2 denotes the
0
mass-weighted spatial average of v2(x,y),
0
_ [ wvidxdy [ wv3dxdy
v2 = = (3-12)
M
0 [ udxdy s

and Mg represents the total mass of the structure. Thus, the
loss factor contribution urs provided to the structure by the

attached system is given by

R IV |2/v2
A 0
n = S ) (3-13)

It is evident from the above that the loss factor contribut-
tion made by an attached system depends on the original velocity

Vg at the attachment point. If this point is a node for which



Vs = 0, then clearly np = 0. If the attachment point is an anti-
node, on the other hand, then le|2/V% may be relatively large.
For example, for beam-like structures with uniformly distributed
mass IVSIZ/;% ~ 2 in this case, and for plate-like structures with
uniformly distributed mass, |Vs|2/v% =~ 4, However, fgr a random
attachment point one finds that on the average IVSIZ/V% =1,

again for systems with uniformly distributed mass.

Equation 3-13 also indicates that the relation of the
attached system's impedance Zp to the impedance Zg of the
structure at the attachment point has a significant effect on the
loss factor contribution na. By appropriate differentiation
procedures one finds that n, takes on the greatest value if the
well-known impedance-matching condition is satisfied - that is,
if Zp is equal to the complex conjugate of 7Zg. For this

situation

fz 12 |v |2
(n ) = = = ‘ (3-14)
nA max wM 4R —_—

S S v

n

onN

where Rg denotes the real part of the structure's impedance at

the attachment point (and here is equal to Rp).

It should be noted at a structural resonance, the imaginary

part of the structural impedance vanishes, so that Zj = Rg, and
the maximum loss factor contribution for this case becomes
R |v |2
s s
nA max 4 M =, ( )
s v§

res



4, ANALYSIS OF TAPERED BEAM ARSORBERS
4.1 Motivations for Analysis

In Section 2, the idea of wavegquide ahsorbers was illus-
trated in terms of uniform or tapered rods (Figs. 3 and 4) that
propagate compressional (longitudinal) waves along their length.
Although such longitudinal waveguides are relatively easy to
visualize and analyze, they are of limited practical interest.
The comparatively high wavespeeds associated with compressional
waves in commonly available materials restrict the utility of
absorbers consisting of compressional waveguides to frequency

regions that are higher than those usually of concern.

The speeds of flexural waves typically are much lower than
those of compressional waves. Flexural waveguide absorbers there-
fore may be expected to be effective in the frequency domains of
interest for structural and mechanical system applications. 1In
fact, the waveguide absorbers that have been built and tested for
practical applications (Refs. 7, 8) rely either entirely or pre-

dominantly on flexural wave action.

A flexural waveguide absorher may be visualized readily in
terms of a beam attached to the vibrating system from which
energy is to be extracted. Figure 5 is a schematic sketch indi-
cating how a double-cantilever may be attached to such a system

via a rigid stand-off connection.

As is the case for waveguide abhsorbhers that rely on compres-
sional waves, flexural waveguide absorbers need not be tapered to
function, but tapered flexural absorbers may be expected to be
lighter and to be damped more effectively by a given treatment
than similar absorbers with uniform cross-sections. The analysis
presented in the present section was undertaken therefore to pro-
vide an understanding of the parameters that affect the perform-

ance of tapered flexural waveguide absorbers.

10



4.2 Impedance of Tapered Beam

General sinusoidal flexure
The equation of lateral motion of a slender beam, in absence
of rotatory inertia and transverse shear effects, may be written
(Ref. 9) as
3 (er 24 + e %u _ g (4-1)
ax2 ax2 at?
where u denotes the lateral displacement, x a length-wise coordi-
nate, and t, time. The beam's properties are represented by the
elastic modulus E and density p of the material, and by the area
A of the beam's cross section and its centroidal moment of

inertia I. 1In general, bhoth EI and pA may be functions of x.

For the case of sinusoidal motion one may introduce complex
(phasor) notation and define
u = e Jut (4-2)
where U denotes the phasor of u. If E and p are constant, so
that

c = JE/p (4-3)

represents the constant longitudinal wavespeed in the beam
material, one may reduce Eq. 4-1 to the following differential
equation for U(x):

3 4 2
+ 2 %% a‘u , 1 80 - 4 w2y (4-4)

dx3 dx4 c?

Q,

dx?2 dx?2

The solutions for U clearly depend on the I(x) and A(x)
functions. Although one may conceive of various beam configura-
tions that are of practical interest, closed-form mathematical
solutions can be obtained for only very few. It is instructive

to investigate the case that is most easily analyzed - that of a

11



beam of uniform thickness with exponentially varying width, for

which one may take

e—28x

. , e—ZBx

I(x) =1 A(x) = A0 5

(4-5)

Substitution of these relations into Eq. 4-4 permits one to

reduce that equation to

2 3 Y
(28)2 92U _ 44 3°U , d¥U - pa2y (4-6)
dx?2 dx3 dxt
where
B = w/cr , r = VI /A, - (4-7)

Note that r represents the radius of gyration of the beam cross-

sectional area at x = 0.

For assumed solutions of Eq. 4-6 of the form U = ePX, one

finds that p must satisfy

p2[(28)2 - 48p + p2] = B2 (4-8)
and thus

The general solution of Eq. 4-6 therefore may be written as

BZ+B -x/BZ+B BZ-B
U(x) = ePX [ eX/B™*B L o oTX/BI¥B , o X/BT-B
++ -+ +—
-x/B2-R
+ C__e xv 8 B] (4-10)

where the C's are constants that depend on the boundary condi-

tions.

12



Cutoff frequency for energy propagation

_ For the case where B < B2, all four values of p of Egq. 4-9
are real quantities, and all four terms of Eq. 4-10 correspond to
non-propagating components.* In this case no energy propagates
along the beam. For B > g2, however, one may rewrite Eg. 4-10 as

8787 ~-x/BTSZ Yy
U(x) = eBx[CH_eX'/B+B +C_,e X/B+B< C_'__ejx'/B B
—. —
+ ¢__e~Ix/B=8%, (4-11)

where the last two terms correspond to propagating components.

In view of Eqg. 4-7, there thus corresponds to B = g2 3 "cut-

off" frequency wyr given by
wy = crp? (4-12)

which marks the dividing line between non-propagating and propa-

gating conditions; energy propagation occurs only for w > wg e

Driving-point impedance

Consider now a semi-infinite beam extending from x = 0 in
the positive x direction, with excitation applied at x = 0 and
acting at a frequency that is above the cutoff frequency. If
U(x) is to remain finite, then C,4 must vanish. Furthermore, the

tax e—jwt o

*If a is real and positive, motion described by u = Ce

+ax—1 - . : . .
Ce=0X Juwt corresponds to all points moving in phase, but with

different amplitudes. On the other hand, u = DeJ(“X_wt) corre-—

sponds to a wave traveling in the direction of positive x, and

u = peJ (-ax-uwt) corresponds to a wave traveling in the direction

of negative x. If D is constant, then the motions are every-
where of the same amplitude, but not of the same phase. If D is
a function of x, then so is the amplitude (see Ref. 10).

13



condition that no energy propagates from infinity toward the

origin requires that C.. vanish. For this case, then, Eq. 4-11
may be rewritten as

- /JBFRZ + 4/B=g<Z
U(x) = C_+e(B YB+B<4)x + C+_e(B jYB-B4)x . (4-13)
The shear force that acts on the beam is given by
0 =2 [p1 22 (4-14)
90X

Ix 2

and for a beam with constant E and with cross-sectional proper-—

ties that vary as given by Eq. 4-5, obeys

2y d3u -2 -]
0 = [-28 T2 4 By gy 72BN et (4-15)
dx2  dx3
The impedance of the beam at the origin x = 0, in view of
the definition of impedance, obeys
g = -9 (4-16)
B 3u78t|x=0 ‘
In view of Egs. 4-2, 4-15 and 4-16,
EI,[-28U"(0) + U"'(0)]
z2_ = , (4-17)

B -jwlU(0)

where the primes indicate differentiation with respect to x. By
substitution for U from Eq. 4-13 and requiring the beam to be
rotation- free at x = 0 (as for a rigidly guided beam or one that
is half of a beam part that is symmetric about the origin), -
i.e., requiring U'(0) = 0, one finds after considerable manipu-
lation that one may rewrite Eq. 4-17 for frequencies above the
cutoff frequency as

2y = Rg + jJg = 2mpwy [4 (F) + ¢ (F)] (4-18)

14



where

¢g(F) = VF-1 [Y1 + 1/F + 1//F]2 (4-19)

¢5(F) = 2/F + (1-2/F) VI+F

F = w/w0 g

and where
” -28x
me = fo pA, e dx = pA /28 (4-20)
corresponds to the total mass of the semi-infinite beam under

discussion.

For high frequencies - that is, for F >> 1 - one finds that
dp ~ 63 *® /F, so that

]m m—
Z s 2 — (14 = pA, v 1+5 . =
A= 55 1 mbO T (1+3) pA, Ycrw (1+3) (4-21)

This is just one half of the impedance of an infinite beam (Ref.
10) with constant cross-section area A,, in agreement with what

one would expect.*

One may also observe that ¢R(l) = 0, implying that R = 0
for w = w,, or that no energy is absorbed by the beam at the cut-~-
off frequency. Again, this agrees with what one would expect,
since no energy can propagate along the beam at and below the

cutoff frequency.

*The beam analyzed here is semi-infinite and has the same con-
straint at x = 0 as an infinite beam, where zero rotation at the
origin is enforced by symmetry. Because no energy is reflected
back to the driving point, only the beam properties at this
point come into play.
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For frequencies below the cutoff frequency, on the other

hand, ¢q vanishes and one may show that

Z e ) . 4—22
B|F << 1 meB ( )
At these low frequencies, thus, the impedance of the beam is just
that of a rigid mass equal to that of the beam - once again as

one would expect.

4.3 Loss Factor Contribution of Tapered Beam as Waveguide
Absorber
The loss factor contribution N that a tapered beam makes to
a vibrating system to which it is attached may be calculated by
substituting the beam's impedance into Eq. 3-13 in place of the
general attached-system impedance. For the semi-infinite tapered
beam discussed in the foregoing paragraphs, one thus finds one

may use Egs. 4-18 and 4-19 to write

am. ¢ v_12/v%
B M F . 2
s S 2wom (6. + id.)
B 'R 3j
1 +
YA
s

This expression may then be employed to investigate how this
loss factor contribution to specific structures varies with the
ratio of the absorber mass to the structure mass, with the fre-
quency ratio F and with the other parameters appearing in this

expression.

4.4 Rotational Excitation of Tapered Beam

The analyses presented in the foregoing paragraphs were
based on the assumption that the tapered beam was excited by a

pure force and that its rotation at the driving point was zero.
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Although this assumption may constitute a realistic approximation
to many practical situations - particularly to those where there
exists a single fastening point and where thus the rotational
stiffness of the attachment is relatively small - it is of inter-
est to investigate the loss factor contribution resulting from

rotational inputs to the tapered beam.

If one notes that the moment Mg and the angular velocity Q

at the origin of a beam are given by

2
Mg = - BI 2Y] (4-24)
ax2 x=0
_ 9%u ' B
® = 333Elx=0 . (4-25)

then one may evaluate the rotational driving point impedance
Zgg = MB/Q : (4-26)

of a tapered beam above its cutoff frequency by substituting Eq.

4-13 into the foregoing expressions and using the boundary condi-

tion U(0) = 0. The result may be written as
Zop = Rgp * 1J¢p
1y VF~1 VF+1 2
= — | + § —] . (4-27)
Brc F F

This loss factor contribution due to energy transmitted to
an attached absorber by angular motion at the attachment point

may be written, in analogy to Eq. 3-13, as

R 2/42
op 1%51%/7%
ne = ™ (4-28)
s 205 2
1+ —
Z
6s
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where ZeR denotes the point-moment impedance of the structure to
which the absorber beam is attached and lﬂsl represents the
aﬁplitude of the angular velocity of the structure at the attach-

ment point in absence of the absorber. Both Zes and Qg here

correspond to the direction related to bending of the attached

beam about an axis perpendicular to its length.

In order to compare n, to n, one needs to know the relation

8

between |QS| and |Vs . For plate-like structures, this is com-

plicated; it depends both on the mode shape and on the orienta-
tion of the absorber heam. For a structure consisting of a uni-
form beam whose axis is parallel to that of the absorber beam,
this relation is simpler, but still depends on the mode shape and
on the specific location of the attachment point. However, one

determines that

e |

2 = k2 |v2] (4-29)
S a S S a

where the added subscript a indicates the spatial average of the
quantity. Here kg denotes the wavenumber of the flexural vibra-
tion of the structural beam and obeys

204 .2
K2 = (;1) = (4-30)

[} r C
s Ls

where X denotes the bending wavelength of the structural beam at

frequency w; r. represents the radius of gyration of that beam's

s
cross-section, and Cpg denotes the longitudinal wavespeed in the

material of that bheam.

For the case where IQSI and IVSI are related as in Eq. 4-29,
one finds that

r CL 11 + Ze/Z e|2
= ic 5 S — [¥T + 1/F - 1//F]2 (4-31)
;] |1 + z/zsl2

I:J

-1
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One may note that the expression involving the frequency ratio F

here is equal to (/2 - 1)2 ~ ,17 for F = 1 and increases mono-

tbmically toward unity for large F. This implies that the rota-
tional loss factor contribution Ng here is equal to the transla-

tional contribution n for large F, but that g > n for small F -
provided that the terms of Eg. 4-31 that do not contain F explic-
itely are equal to unity, something that may occur only in some

special cases that are beyond the scope of the present study.
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5. EXPLORATORY EXPERIMENTS
5.1 ‘Experimental Absorbers and Plate Structure

A brief experimental study was carried out in order to
investigate the applicability of the foregoing theoretical
results and to gain insight into the performance of broadband
ahsorbers. A tapered heam (see Fig. 6) was built and its
impedance measured in order to provide a check on the theory
developed in Section 4.2. 1In addition, two disks, each with 8
spiral cuts (see Fig. 7) were huilt. These disks were modeled
after similar ones described by the German investigators [7];
they were expected to act like a multi-beam vibration absorber
and could be constructed.ielatiQely easily. The impedances of
the two spiral disks (individually and in combination) were
measured. In addition, their effect on the loss factor of an
experimental plate was evaluated experimentally in order to

assess the validity of the theory developed in Section 3.2,

Each absorber was made of 1/16 in. aluminum plate with 1/8
in. thick damping material (E-A-R ISODAMP C-2003) adhered to the
surface. The manufacturer's literature give the following values
of the damping material properties at room temperature and in the

frequency range 100 - 10,000 Hz:

1714 kg/m3 (107 1b/ft3)

el
]

2 x 109 N
m2

23]
]

n= 0.5 .
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Figure 8 shows the experimental plate, used as the "struc-
ture" to which the absorbers were attached in order to investi-
gate their effect on the structure's loss factor. The plate was
designed to have no parallel edges, so as to facilitate achieving
a fairly uniform vibration field. Holes where the absorbers
could be bolted to the plate were provided at three positions:
position 1 near the center of the plate, position 2 near an edge,
and position 3 at an in-between location. All of the results
presented here are for the absorber attached at position 3, which
is expected to be the most representative location. Figure 9
shows the three methods used for attaching the absorbers to the
plate; they were selected for their convenience and so as to
provide enough standoff to permit the absorbers to vibrate

freely.

5.2 Impedances

Figure 10 shows the instrumentation system used for measur-
ing the mechanical impedance of the absorbers and the plate. The
test specimen was subjected to broadband excitation via an impe-

dance head attached to an electrodynamic shaker.

An HP 5423A Dual Channel Analyzer was used to obtain the
real and imaginary parts of the impedance from the simultaneous

force and acceleration signals generated by the impedance head.

Figure 11 shows the experimentally determined real and imag-
inary parts of the input impedance at the center of the tapered
beam (including the mass of the studs, nuts and washers, shown in
Fig. 9 as used to attach the single absorbers to the plate). The
measured real and imaginary parts of the impedance of this
attachment hardware alone are shown in Fig. 12. As expected, the
impedance of the attachment hardware is essentially that of a
mass; i.e. the attachment hardware responds as a rigid body with
an impedance Z JuM

where M, ., = 48 gms

attachment tt’
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is the mass of the attachment hardware plus the impedance head

mass in front of the force gage of the impedance head.

The impedance of the tapered beam alone (without attachment
hardware) was obtained by subtracting the real and imaginary
parts of Zittachment (Fig. 12) from the real and imaginary parts
of Zpeam + attachment (Fig. 11). The results are shown in
Eilgs “M3e

Also shown in this figure as dashed lines are the theoret-
ical real and imaginary parts of the impedance of a centrally-
driven infinitely long tapered beam (symmetrical about the driv-
ing point at x = 0, with the beam tapered in both the +x and -x
directions). The theoretical impedance values shown are twice
those for a one-sided semi-infinite beam, given by Eq. 4-18; R, =
19.0 kg/s and f0 = ano = 29,0 Hz,

It is clear from this figure that the impedance of the
experimental tapered beam does not exhihit the theoretical
infinitely-long beam behavior. Even at the high frequencies
where the impedance no longer exhibits the effects of individual
resonants, the real part of the impedance does not appear to be
approaching the theoretical solution. A possible explanation is
that the center portion of the experimental beam, which is not
covered by damping material (see Fig. 6), deforms like a spring

and isolates the mass of the beam to some extent,

Figures 14 and 15 show the measured impedances of a
centrally-driven 8-spiral disk (see Fig. 7) with and without
attachment hardware. Figure 16 show the measured impedance of two

8-spiral disks, arranged as shown in Fig. 10b.

The results of measurements of the plate impedance are shown
in Fig. 17. The coherence between the force and acceleration
signals was poor at frequencies below about 3000 Hz, so that

these measured impedances are inadequate. For subsequent calcu-
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lation purposes, the theoretical impedance for an infinite plate

(shown as dashed lines in Fig. 17) was used.

5.3 Loss Factors

The experimental set-up used for measuring the loss factor
of the plate, with and without the absorbers attached, is shown
in Fig. 18. The plate was excited in 1/3 octave bands by the
sound pressure from an acoustic driver placed close to the plate.
The excitation was switched off and the time history of the 1/3
octave band acceleration level (in dB) of the plate was obhtained
using a Graphic Level Recorder. The reverberation time Teo* for
each 1/3 octave band was determined from the slope of the accel-
eration level time history curve (see for example, Fig. 20). The

loss factor was then computed from (Ref. 10)

n = (5-1)

where £ is the 1/3 octave band center frequency.

Figures 20-22 present the measured loss factors of the plate
with an 8-spiral disk bolted to it, an 8-spiral disk expoxied to
it, and two 8-spiral disks bolted to it, all at position 3. Also
shown on these figures are the measured loss factors for the

undamped plate (nP), as well as the calculated loss factors.

The calculated loss factor of the plate with the attached
absorber was obtained by adding to the measured loss factor np of
the plate without the absorber the calculated plate loss factor
contribution na made by the absorber. The latter was calculated
from Eq. 3-13, using for 7Zp = Ry + jJp the measured driving-point

(force) impedances of the absorbers and the attachment hardware,

*Teo is the time in seconds required for the acceleration level
to decay by 60 dB.
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assuming |Vg|2/;% = 1, and using for Zg the theoretical impedance
of an infinite plate;* that is

25 = Zp ~ 2.3 chhZ/(l-vz) (5-2)
where h denotes the plate's thickness, p the density, ¢, the
longitudinal wave speed and v the Poisson's ratio of the plate
material. For the experimental plate, Z, = 165 kg/s and M. =
6.37 kg.

5.4 Discussion of Results

Figures 20-22 indicate that the addition of the absorbers
typically increased the plate loss factor by a factor of about 2.
The theoretically obtained loss factors shown in these figures
are of the same order of magnitude as the measured ones, although

they appear to be too high at frequencies below about 600 Hz.

The reasons for this are not clear. Possible explanations
include errors in the measured impedances of the absorbers, the
assumption that the experimental plate impedance can be modeled
as that of an infinite plate, and inaccuracies in the measurement
of the plate loss factors. Since the measured impedance of the
two 8-spiral disks in combination agrees well with the sum of the
impedances of the individual 8-spiral disks measured individu-

ally, it is probable that the experimentally determined ahsorber

*From Ref. 10 one may calculate that a one-third octave band
centered at 125 Hz contains 5.5 modes of the experimental plate,

and that the number of modes in other one-third octave bands is
proportional to the band's center frequency. Thus, many plate

modes typically occur in any given one-third octave band in the

measurement range. This fact implies that the spatial average

condition |V |2/v% = 1 should be a reasonable one to apply and
s

also that the infinite plate impedance should be a good approxi-
mation in the frequency-average (Ref. 6).
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impedances are correct. Also, since the number of resonant modes
in each 1/3 octave band for the experimental plate is high (see
footnote accompanying Eg. 5-2), the infinite plate impedance
should be a good approximation to the frequency-average of the
impedance in each 1/3 octave band considered here. Thus, inaccu-
racies in the measured loss factors appear to be the most likely

source of the discrepancies between theory and experiment.

It is instructive to compare the loss factor contributions
of the experimental spiral disk absorbers with the comparable
maximum loss factor contributions that can be obtained - i.e.,
those obtained by means of an absorber that is impedance-matched
to the plate. For this purpose, values of nA/(va|2/;%) calcu-
lated from Eg. 3-13 for the experimental absorbers (using the
measured values of Zp, and the theoretical value of Zs) are shown
in Fig. 23 together with the maximum values calculated from Eq.
3-14. One may note that in the high frequency range (above about
2000 Hz) the absorber with the least attachment hardware (i.e.,
the one epoxied to the plate) gives the best performance (nearly
optimum). For this absorber configuration, the imaginary part of
the impedance is very close to zero, thus approximately satisfy-
ing that part of the impedance matching condition for maximizing
n, that requires the imaginary part of Z, to be the negative of
that of 74 (since the plate impedance Zg is purely real). For
the other two absorbers (with more attachment hardware mass) the
imaginary parts of Z, at high frequencies are larger, resulting

in poorer impedance matching.

Figure 24 presents a comparison of the loss factor increases
achievable for the experimental plate with three idealized damp-
ing treatments of the same weight - i.e., 168 gm or about 2.6% of

the plate weight. These treatments consist of:

a) An 8-spiral disk absorber, ideally impedance-matched to
the plate, attached to it so that |VS|2/;% = 1 (see
footnote accompanying Eq. 5-2) and without taking advan-
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tage of additional damping potentially available from

rotational excitation of the absorber.

b) A thin, rigidly attached single layer of a highly effec-
tive viscoelastic material with assumed frequency-
independent loss modulus (E-A-R ISODAMP C-2003; see p.
20 for property values).

c) An optimized constrained layer treatment consisting of
an aluminum cover plate of about 2 mils thickness
attached to the basic plate via an extremely thin layer
of an ideal viscoelastic material with frequency-
independent loss factor of 0.5 and low shear modulus,
designed for optimum performance at 1 kHz.

Also shown in the figure is a curve corresponding to the best
practically feasible constrained layer treatment, as discussed
later.

The loss factors of the theoretical viscoelastic layer
treatments were calculated using relations from Ref. 11 and are
based on the assumption that the viscoelastic materials can be
obtained in suitable thicknesses and can be attached to the
plate(s) by means of extremely thin adhesive layers. 1In fact, a
free viscoelastic layer would need to be about 3 mils thick, and
the aluminum cover plate atop a constrained viscoelastic layer
would need to be about 2 mils thick for the treatments to weigh
the same as a single waveguide ahsorber. These thicknesses are

marginally practical.

The frequency at which the greatest loss factor of a plate
with a constrained layer treatment occurs varies very nearly
inversely with the thickness of the viscoelastic material and
directly as the material's shear modulus. By selecting different
viscoelastic layer thicknesses one can thus in effect shift the
corresponding loss factor curve parallel to the frequency axis.
Extremely thin constrained viscoelastic layers of practical
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materials thus correspond to damping peaks at very high frequen-
cies and tend to result in very low loss factors at the frequen-
cies of interest. The theoretical curve indicated in Fig. 24
corresponds to a 0.1 mil thick viscoelastic material with a shear
modulus of the order of 10 psi; a lower modulus and/or greater
viscoelastic material thickness would be required to shift the
damping peak to lower frequencies.

The foregoing constrained layer parameters are clearly
impractical. If one assumes a 1.8 mil covering layer constrain-
ing a 0.5 mil layer of a viscoelastic material with the lowest
practically likely shear modulus of 1000 psi one obtains what is
probably the best practically achievable configuration. 1Its
performance, as evident from the figure, is considerably poorer
than that of the ideal configuration.

It appears from Fig. 24 that for a uniform thin plate 1like
the one investigated experimentally, optimized constrained or
free viscoelastic layer treatments can in theory provide greater
damping than an optimum waveguide absorber of the same weight,
except perhaps at low frequencies. However, a waveguide absorber
here may be expected in practice to outperform a constrained
layer treatment over most of the frequency range of concern, as
well as having constructional advantages (e.g., ease of manufac-
ture, attachment, dimensional control) over both types of visco-

elastic layer treatments.
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6. CONCLUDING REMARKS

6.1 Summary

Expressions have been developed that indicate the loss fac-
tor contributions which idéalized tapered bheam absorbers can make
to vibrating systems to which they are attached. Although one
can conceive of other types of absorber configqurations, tapered
beams may be considered representative of absorhers that work on

the basis of flexural motions of damped systems.

The analytical expressions, which may be used for design
guidance, display the important parameter dependences. As also
is evident from experimental results, these expressions indicate
the importance of matching the absorber's impedance to that of
the structure to which it is to bhe attached; mismatching tends to

reduce an absorber's effectiveness severely.

It is also evident from the analytical results for a tapered
beam attached to a structure that for the case where the struc-
ture's impedance is much greater than the attached absorber's
impedance, the loss factor contribution made by the absorber is
proportional to the ratio of the absorber mass to the structure

mass.

The sample absorbers used for the exploratory plate damping
experiments reported here were constructed ad hoc, essentially
copying similar absorbers described in the literature, without
any effort at development. The measured-mechanical impedance
data show that these sample absorbers generally do not exhibit
the desired waveguide behavior and also do not perform like the
absorbers for which data appears in the literature. It appears
that more careful design and development are required to obtain

waveguide absorbers with improved practical performance.

Although the results obtained in this too brief preliminary
study are incomplete and far from fully conclusive, it appears
that appropriately developed and well-selected waveguide absorb-
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ers are promising means for providing significant amounts of
structural damping. They may be expected to be particularly
useful for relatively massive structures and at relatively low
frequencies, for which viscoelastic coatings and laminates tend
to be ineffective, or for other configurations, such as thin-
walled structures, where viscoelastic treatments may be too heavy
or otherwise impractical. They may be especially attractive for

vibration control applications in retrofit situations.

6.2 Recommendations

In view of the promising results that have been described in
the literature and the preliminary nature of the results of the
exploratory investigation summarized here, it appears that wave-=

guide absorbers merit further study.

Development efforts appear advisable that address (a) better
consideration of rotationai inputs, to take advantage of this
additional path for extracting energy from a vibrating structure,
(b) improved attachment details to ensure the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>